Síguenos

Salud y Bienestar

Un nuevo tratamiento español contra el cáncer de páncreas estimula las defensas y frena el crecimiento tumoral en ratones

Publicado

en

Un nuevo tratamiento contra el cáncer de páncreas estimula las defensas y frena el crecimiento tumoral en ratones

Un estudio con participación del CSIC analiza la efectividad de la aplicación directamente en el tumor de nanopartículas magnéticas que generan calor al exponerse a un campo magnético

La hipertermia magnética es un tratamiento experimental antitumoral que podría ser útil para el cáncer de páncreas. Consiste en el empleo de nanopartículas magnéticas que generan calor al ser expuestas a un campo magnético alterno externo inocuo para los tejidos. Para avanzar en esta línea, investigadores del Instituto de Nanociencia y Materiales de Aragón (INMA), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad de Zaragoza, y del CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), han estudiado varios parámetros críticos en su efectividad, y han detectado un aumento de la respuesta inmune en los modelos animales y una mayor inhibición del crecimiento tumoral.

En este trabajo, publicado en la revista ACS Applied Materials and Interfaces, se estudió el efecto de la hipertermia magnética en cáncer de páncreas dada la peculiaridad de este tipo de cáncer de tener una matriz extratumoral muy densa, que dificulta la llegada de los fármacos en tratamientos convencionales.

“La hipertermia magnética es de especial interés en este tipo de tumores porque puede tener un efecto dual ayudando a la matriz extracelular a ser más permeable y provocando la muerte de las células tumorales. La sinergia de este tratamiento con terapias convencionales podría resultar de gran relevancia, explica Laura Asín, investigadora del Instituto de Nanociencia y Materiales de Aragón (INMA, CSIC-UNIZAR) y del CIBER-BBN.

Durante los experimentos se emplearon distintos tipos de modelos biológicos. Mediante modelos celulares 3D basados en geles de colágeno, donde se alojan las células de cáncer de páncreas, se optimizaron las condiciones del campo magnético alterno para obtener la máxima muerte celular posible. A continuación, se realizaron experimentos en un modelo de cáncer de páncreas de ratón, que demostraron, de forma preliminar, que el tratamiento de hipertermia magnética es capaz de estimular la producción de moléculas relacionadas con la activación de la respuesta inmune.

“La activación de las propias defensas del individuo tratado con hipertermia magnética podría suponer una gran ventaja ya que aportaría una respuesta antitumoral extra con la que combatir las células tumorales, añade Valeria Grazú, investigadora del INMA y del CIBER-BBN.

 

Distribución impredecible y heterogénea

En este tratamiento las nanopartículas magnéticas se inyectan directamente en el tumor para asegurar su presencia en mayores cantidades en esa zona y obtener una mejor respuesta. En este sentido, uno de los avances más novedosos y relevantes de este trabajo es que las nanopartículas magnéticas presentan una biodistribución impredecible y heterogénea en los animales.

En algunos ratones se detectó la presencia de estas nanopartículas en órganos como el bazo y el hígado, mientras que en otros casos los niveles fueron indetectables y se mantuvieron principalmente en el tumor. La diferencia en la biodistribución podría estar relacionada con la efectividad del tratamiento, ya que en los animales que presentaban mayor carga de nanopartículas en el tumor este creció menos.

Advertisement
Click para comentar

Tienes que estar registrado para comentar Acceder

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Salud y Bienestar

Científicos españoles reproducen en laboratorio la implantación de un embrión humano hasta el día 14

Publicado

en

laboratorio implantación embrión humano
Foto: IVI

Un equipo internacional de investigadores con una destacada participación española ha logrado un hito científico sin precedentes: reproducir en laboratorio la implantación de un embrión humano hasta el día 14 de desarrollo, el límite legal permitido para su estudio. El avance abre nuevas vías para comprender por qué fracasan muchos embarazos en sus primeras fases y supone un paso decisivo hacia una reproducción asistida más eficaz y personalizada.

La investigación ha sido impulsada por científicos del IIS La Fe, la Fundación IVI, la Universidad de Stanford y el Babraham Institute, en un contexto marcado por la baja natalidad y el retraso en la edad de maternidad, factores que están influyendo de forma directa en las dificultades para lograr un embarazo.

Un avance clave para entender el inicio del embarazo

La implantación embrionaria es uno de los momentos más críticos del embarazo y, hasta ahora, uno de los más desconocidos desde el punto de vista científico. La imposibilidad de observar este proceso fuera del útero humano limitaba enormemente el estudio de las causas que provocan muchos fallos reproductivos.

Gracias a este nuevo modelo experimental, los investigadores han conseguido recrear de forma controlada el entorno del endometrio humano durante los primeros días de desarrollo del embrión, permitiendo analizar con precisión cómo se produce la implantación y qué factores pueden impedirla.

Un modelo 3D que replica la implantación embrionaria

“El estudio ha permitido, por primera vez, conseguir una implantación embrionaria humana en el laboratorio y desarrollar un modelo tridimensional que replica, hasta el día 14, la implantación embrionaria humana”, explica Francisco Domínguez, jefe de Receptividad Endometrial y Fundación Embrionaria de la Fundación IVI.

Este modelo 3D supone un salto cualitativo para la investigación, ya que reproduce con gran fidelidad lo que ocurre en el útero durante los primeros compases del embarazo, una etapa determinante para que la gestación llegue a término.

Clave para investigar el fallo de implantación repetido

Uno de los principales objetivos de este avance es profundizar en el estudio del fallo de implantación embrionaria repetido, un problema que afecta a un número creciente de mujeres y que, en muchos casos, carece de una explicación clara.

“Este modelo nos va a permitir estudiar por qué se producen algunos fallos de implantación. Podremos trabajar con células de las propias pacientes, cultivarlas en el laboratorio y determinar las razones específicas por las que no se produce la implantación”, señala el doctor Domínguez.

Este enfoque permitirá analizar cada caso de forma individualizada, algo que hasta ahora no era posible por la falta de modelos fiables que replicaran el entorno del útero humano.

Hacia una medicina reproductiva más personalizada

El logro no solo amplía el conocimiento sobre los primeros días del desarrollo embrionario, sino que también abre la puerta a una nueva era en la reproducción asistida. La posibilidad de estudiar la implantación en condiciones controladas facilitará el diseño de tratamientos más precisos y adaptados a cada paciente.

“Hasta ahora no contábamos con buenos modelos que replicaran lo que ocurre en el útero humano. Esto abre posibilidades reales de medicina personalizada en nuestro campo que antes no existían”, subrayan los investigadores.

Un impacto directo en los tratamientos de fertilidad

A medio y largo plazo, este avance podría contribuir a mejorar las tasas de éxito de los tratamientos de reproducción asistida, reducir la incertidumbre emocional de las parejas y optimizar los protocolos clínicos, ajustándolos mejor a las necesidades de cada mujer.

En un escenario marcado por los cambios demográficos y el aumento de los problemas de fertilidad, la reproducción en laboratorio de la implantación embrionaria hasta el día 14 se consolida como uno de los avances científicos más relevantes de los últimos años en el ámbito de la biomedicina reproductiva.

Continuar leyendo