Síguenos

Salud y Bienestar

¿Por qué las bacterias son resistentes a los antibióticos?

Publicado

en

VALÈNCIA, 24 Jul. – Un equipo de investigadores liderado por el científico valenciano José Rafael Penadés, de la University of Glasgow, ha hallado un nuevo mecanismo para la comprensión del proceso evolutivo de las bacterias, clave en el actual contexto de crisis sanitaria por el aumento de las resistencias a los antibióticos, según ha informado este miércoles el CEU San Pablo en un comunicado.

El hallazgo, publicado este miércoles en la revista científica Molecular Cell, revela cómo las islas de patogenicidad de las bacterias que causan infecciones más virulentas «secuestran» virus para expandirse con mayor rapidez en el medio natural y convertir bacterias inocuas en patógenos virulentos.

El estudio describe el movimiento de las islas de patogenicidad encontradas en los cromosomas de bacterias y superbacterias resistentes a los antibióticos como un mecanismo evolutivo inteligente.

Estas islas de patogenicidad, que han denominado «Phage-Inducible Chromosomal Islands» o PICIs, constituyen una nueva familia de elementos genéticos móviles presentes en las bacterias patógenas que juegan un papel importante en su evolución y en el desarrollo de su resistencia a los antibióticos.

Por tanto, las PICIs son clínicamente importantes porque transportan y diseminan genes de virulencia patógena y resistencia antibiótica a otras bacterias y la transferencia de este material genético está en el origen del aumento de ‘clones’ de las bacterias y superbacterias más virulentas y resistentes.

MECANISMO EVOLUTIVO INTELIGENTE
Al respecto, el profesor José Rafael Penadés, investigador principal del estudio, ha explicado que «la relevancia del hallazgo radica en que hemos descrito cómo las islas de patogenicidad de las bacterias más peligrosas secuestran y retienen a los virus para servirse de ellos en su proceso de expansión a otras bacterias».

Por eso, ha señalado que se ha denominado a este proceso como el «secuestro del secuestrador». Un proceso que demuestra la inteligencia evolutiva de esta parte del material genético presente en las bacterias.

Así, las islas de patogenicidad son capaces de detectar virus bacterianos y ‘secuestrarlos’ para expandirse a otras bacterias, en un mecanismo evolutivo verdaderamente inteligente para hacer más rápida su expansión y, como consecuencia, más efectiva su capacidad de infección». De hecho, esta actividad de las islas de patogenicidad se ha detectado ya en un proceso infeccioso muy grave: el síndrome de shock tóxico.

EQUIPO INVESTIGADOR
El investigador valenciano José Rafael Penadés fue el primer jefe de estudios de la Facultad de Veterinaria del CEU y continúa colaborando con el Departamento de Ciencias Biomédicas de la Universidad CEU Cardenal Herrera de Valencia desde la University of Glasgow, donde desarrolla su labor investigadora en el Institute of Infection, Immunity and Inflammation de la universidad británica.

El equipo liderado desde Glasgow por Penadés, ha estado integrado por la investigadora de la Universidad CEU Cardenal Herrera (CEU UCH) Roser Martínez Rubio, y por Alberto Marina y Rafael Ciges, del Instituto de Biomedicina de Valencia (IBV-CSIC), junto a científicos de la Shaqra University de Arabia Saudí y la National University of Singapore.

El estudio ha contado para su desarrollo con la financiación del Medical Research Council (MRC), el Biotechnology and Biological Services Research Council (BBSRC), la fundación Wellcome Trust y el programa Advanced Grant del European Research Council (ERC).

Fuente: (EUROPA PRESS)

Advertisement
Click para comentar

Tienes que estar registrado para comentar Acceder

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Salud y Bienestar

Científicos españoles reproducen en laboratorio la implantación de un embrión humano hasta el día 14

Publicado

en

laboratorio implantación embrión humano
Foto: IVI

Un equipo internacional de investigadores con una destacada participación española ha logrado un hito científico sin precedentes: reproducir en laboratorio la implantación de un embrión humano hasta el día 14 de desarrollo, el límite legal permitido para su estudio. El avance abre nuevas vías para comprender por qué fracasan muchos embarazos en sus primeras fases y supone un paso decisivo hacia una reproducción asistida más eficaz y personalizada.

La investigación ha sido impulsada por científicos del IIS La Fe, la Fundación IVI, la Universidad de Stanford y el Babraham Institute, en un contexto marcado por la baja natalidad y el retraso en la edad de maternidad, factores que están influyendo de forma directa en las dificultades para lograr un embarazo.

Un avance clave para entender el inicio del embarazo

La implantación embrionaria es uno de los momentos más críticos del embarazo y, hasta ahora, uno de los más desconocidos desde el punto de vista científico. La imposibilidad de observar este proceso fuera del útero humano limitaba enormemente el estudio de las causas que provocan muchos fallos reproductivos.

Gracias a este nuevo modelo experimental, los investigadores han conseguido recrear de forma controlada el entorno del endometrio humano durante los primeros días de desarrollo del embrión, permitiendo analizar con precisión cómo se produce la implantación y qué factores pueden impedirla.

Un modelo 3D que replica la implantación embrionaria

“El estudio ha permitido, por primera vez, conseguir una implantación embrionaria humana en el laboratorio y desarrollar un modelo tridimensional que replica, hasta el día 14, la implantación embrionaria humana”, explica Francisco Domínguez, jefe de Receptividad Endometrial y Fundación Embrionaria de la Fundación IVI.

Este modelo 3D supone un salto cualitativo para la investigación, ya que reproduce con gran fidelidad lo que ocurre en el útero durante los primeros compases del embarazo, una etapa determinante para que la gestación llegue a término.

Clave para investigar el fallo de implantación repetido

Uno de los principales objetivos de este avance es profundizar en el estudio del fallo de implantación embrionaria repetido, un problema que afecta a un número creciente de mujeres y que, en muchos casos, carece de una explicación clara.

“Este modelo nos va a permitir estudiar por qué se producen algunos fallos de implantación. Podremos trabajar con células de las propias pacientes, cultivarlas en el laboratorio y determinar las razones específicas por las que no se produce la implantación”, señala el doctor Domínguez.

Este enfoque permitirá analizar cada caso de forma individualizada, algo que hasta ahora no era posible por la falta de modelos fiables que replicaran el entorno del útero humano.

Hacia una medicina reproductiva más personalizada

El logro no solo amplía el conocimiento sobre los primeros días del desarrollo embrionario, sino que también abre la puerta a una nueva era en la reproducción asistida. La posibilidad de estudiar la implantación en condiciones controladas facilitará el diseño de tratamientos más precisos y adaptados a cada paciente.

“Hasta ahora no contábamos con buenos modelos que replicaran lo que ocurre en el útero humano. Esto abre posibilidades reales de medicina personalizada en nuestro campo que antes no existían”, subrayan los investigadores.

Un impacto directo en los tratamientos de fertilidad

A medio y largo plazo, este avance podría contribuir a mejorar las tasas de éxito de los tratamientos de reproducción asistida, reducir la incertidumbre emocional de las parejas y optimizar los protocolos clínicos, ajustándolos mejor a las necesidades de cada mujer.

En un escenario marcado por los cambios demográficos y el aumento de los problemas de fertilidad, la reproducción en laboratorio de la implantación embrionaria hasta el día 14 se consolida como uno de los avances científicos más relevantes de los últimos años en el ámbito de la biomedicina reproductiva.

Continuar leyendo