Síguenos

PORTADA OFFICIAL PRESS

Nobel de Medicina para Katalin Karikó y Drew Weissman por conseguir la vacuna de ARNm contra la COVID-19

Publicado

en

Nobel de Medicina 2023 vacuna COVID
La bioquímica Katalin Karikó y el inmunólogo Drew Weissman han sido los galardonados con el Nobel de Medicina 2023. / Alex Gardner/ UPenn

El Nobel de Medicina 2023 es para Katalin Karikó y Drew Weissman por sus contribuciones a las vacunas ARNm contra la covid-19. La Asamblea Nobel del Instituto Karolinska ha concedido el Premio Nobel de Medicina a la bioquímica de origen húngaro y al inmunólogo estadounidense, por sus descubrimientos sobre las modificaciones de las bases de nucleósidos, que hicieron posible el desarrollo rápido de las vacunas ARNm contra el coronavirus.

El jurado de los Nobel de este año ha considerado que los descubrimientos de los dos premiados con el Nobel de Fisiología o Medicina 2023 “han sido fundamentales para desarrollar vacunas eficaces de ARNm contra la covid-19 durante la pandemia que comenzó a principios de 2020”.

“Los revolucionarios descubrimientos de la bioquímica Katalin Karikó (Szolnok, Hungría 1955) y el inmunólogo Drew Weissman (Lexington, EE UU, 1959) han cambiado radicalmente nuestra comprensión del modo en que el ARNm interactúa con nuestro sistema inmunitario”, señala el comunicado de los Premios Nobel.

“Los galardonados contribuyeron al ritmo sin precedentes de desarrollo de vacunas durante una de las mayores amenazas para la salud humana de los tiempos modernos”, según el jurado

Los galardonados, ambos investigadores de la Universidad de Pensilvania (EE UU),“contribuyeron al ritmo sin precedentes de desarrollo de vacunas durante una de las mayores amenazas para la salud humana de los tiempos modernos”, añaden estas fuentes.

Karikó y Weissman ya fueron ganadores del Premio Princesa de Asturias de Investigación (2021) y del Premio Fundación BBVA Fronteras del Conocimiento en Biología y Biomedicina (2022), donde también se reconoció su aportación al desarrollo de vacunas contra el coronavirus

Vacunas antes de la pandemia

La vacunación estimula la formación de una respuesta inmunitaria frente a un agente patógeno concreto. Esto da al cuerpo una ventaja en la lucha contra la enfermedad en caso de una exposición posterior. Desde hace tiempo existen vacunas basadas en virus muertos o debilitados, como las de la poliomielitis, el sarampión y la fiebre amarilla. En 1951, Max Theiler recibió el Premio Nobel de Fisiología o Medicina por desarrollar la vacuna contra la fiebre amarilla.

Gracias a los avances de la biología molecular en las últimas décadas, se han desarrollado vacunas basadas en componentes virales individuales, en lugar de virus enteros. Partes del código genético viral, que suelen codificar proteínas que se encuentran en la superficie del virus, se utilizan para fabricar proteínas que estimulan la formación de anticuerpos bloqueadores del virus.

Ejemplos de ello son las vacunas contra el virus de la hepatitis B y el virus del papiloma humano. Otra posibilidad es trasladar partes del código genético viral a un virus portador inofensivo, un ‘vector’. Este método se utiliza en las vacunas contra el virus del Ébola. Cuando se inyectan vacunas vectoriales, la proteína vírica seleccionada se produce en nuestras células, estimulando una respuesta inmunitaria contra el virus objetivo.

Métodos de producción de vacunas antes de la pandemia de la covid-19. / © The Nobel Committee for Physiology or Medicin. / Mattias Karlén

ARNm: una idea prometedora

En nuestras células, la información genética codificada en el ADN se transfiere al ARN mensajero (ARNm), que se utiliza como molde para la producción de proteínas. En la década de 1980 se introdujeron métodos eficaces de producción de ARNm sin cultivo celular, denominados transcripción in vitro.

Este paso decisivo aceleró el desarrollo de las aplicaciones de la biología molecular en varios campos. También despegaron las ideas de utilizar las tecnologías de ARNm para vacunas y fines terapéuticos, pero aún quedaban obstáculos por superar.

El ARNm transcrito in vitro se consideraba inestable y difícil de administrar, lo que exigía el desarrollo de sofisticados sistemas lipídicos portadores para encapsular el ARNm. Además, provocaba reacciones inflamatorias. Por tanto, el entusiasmo por desarrollar la tecnología del ARNm con fines clínicos fue inicialmente limitado.

El gran avance de la vacuna ARNm contra la COVID

Karikó y Weissman observaron que las células dendríticas reconocen el ARNm transcrito in vitro como una sustancia extraña, lo que provoca su activación y la liberación de moléculas de señalización inflamatoria.

Se preguntaron por qué este ARNm era reconocido como extraño mientras que el procedente de células de mamífero no daba lugar a la misma reacción. Ambos investigadores se dieron cuenta de que algunas propiedades críticas debían distinguir los distintos tipos de ARN mensajero.

El ARN contiene cuatro bases, abreviadas A, U, G y C, que corresponden a A, T, G y C en el ADN, las letras del código genético. Karikó y Weissman sabían que las bases del ARN de células de mamíferos suelen estar químicamente modificadas, mientras que el ARNm transcrito in vitro no lo está.

Entonces, se cuestionaron si la ausencia de bases alteradas en el ARN transcrito in vitro podría explicar la reacción inflamatoria no deseada. Para investigarlo, produjeron diferentes variantes de ARNm, cada una con alteraciones químicas únicas en sus bases, que administraron a células dendríticas.

Resultados sorprendentes de la vacuna

Los resultados fueron sorprendentes: la respuesta inflamatoria casi desaparecía cuando se incluían modificaciones en las bases del ARNm. Esto supuso un cambio de paradigma en nuestra comprensión de cómo las células reconocen y responden a diferentes formas de ARNm.

Karikó y Weissman comprendieron de inmediato que su descubrimiento tenía un profundo significado para el uso del ARNm como terapia. Estos resultados fundamentales se publicaron en 2005, quince años antes de la pandemia del coronavirus.

En estudios posteriores publicados en 2008 y 2010, los dos investigadores demostraron que la administración de ARNm generado con modificaciones de bases aumentaba notablemente la producción de proteínas en comparación con el ARNm no modificado. El efecto se debía a la menor activación de una enzima que regula la producción de proteínas. Gracias a sus descubrimientos de que las modificaciones de las bases reducían las respuestas inflamatorias y aumentaban la producción de proteínas, Karikó y Weissman habían eliminado obstáculos críticos en el camino hacia las aplicaciones clínicas del ARNm.

El ARNm contiene cuatro bases diferentes abreviadas: A, U, G y C. Los galardonados descubrieron que el ARNm con bases modificadas puede utilizarse para bloquear la activación de reacciones inflamatorias (secreción de moléculas señalizadoras) y aumentar la producción de proteínas cuando el ARNm se administra a las células. / © Comité Nobel de Fisiología o Medicina. / Mattias Karlén

El verdadero potencial de las vacunas ARNm

El interés por la tecnología del ARNm empezó a repuntar y, en 2010, varias empresas trabajaban en el desarrollo del método. Se buscaban vacunas contra el virus del Zika y el MERS-CoV; este último está estrechamente relacionado con el SARS-CoV-2.

Tras el brote de la covid-19, se desarrollaron en tiempo récord dos vacunas de ARNm modificado con bases que codificaban la proteína de superficie del SARS-CoV-2. Se notificaron efectos protectores de cerca del 95 %

Tras el brote de la pandemia de covid-19, se desarrollaron a una velocidad récord dos vacunas de ARNm modificado con bases que codificaban la proteína de superficie del SARS-CoV-2. Se notificaron efectos protectores de alrededor del 95 %, y ambas vacunas fueron aprobadas ya en diciembre de 2020.

La impresionante flexibilidad y rapidez con que pueden desarrollarse las vacunas de ARNm allanan el camino para utilizar la nueva plataforma también para vacunas contra otras enfermedades infecciosas. En el futuro, la tecnología también podrá utilizarse para administrar proteínas terapéuticas y tratar algunos tipos de cáncer.

Fuente: Nobel Prize
Derechos: Creative Commons.

Advertisement
Click para comentar

Tienes que estar registrado para comentar Acceder

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

PORTADA OFFICIAL PRESS

Todos los detalles y dónde ver la ceremonia de inauguración de los Juegos Olímpicos de París 2024

Publicado

en

Juegos Olímpicos 2024

El misterio en torno a la ceremonia de inauguración de los Juegos Olímpicos de París 2024 es absoluto, con pocos detalles revelados sobre el evento que se celebrará hoy, 26 de julio, a lo largo del río Sena en la capital francesa. Este será un momento decisivo y altamente anticipado, ya que por primera vez en la historia, la ceremonia de apertura no se llevará a cabo en un estadio, lo que representa un desafío tanto en términos de seguridad como de organización para los anfitriones.

La organización ha confirmado el recorrido por el Sena, que abarcará seis kilómetros desde el puente de Austerlitz hasta el puente de Jena, entre los jardines del Trocadero y la Torre Eiffel. Está previsto que 94 embarcaciones transporten a 8.500 atletas a lo largo del río. Siguiendo la tradición olímpica, la delegación de Grecia abrirá el desfile, manteniendo un ritmo de 9 kilómetros por hora y completando el trayecto en aproximadamente 42 minutos. La ceremonia está programada para durar tres horas y 45 minutos, comenzando a las 19:30 horas (hora peninsular). La delegación rusa, debido al conflicto en Ucrania, competirá bajo bandera neutral y no participará en la inauguración.

Un total de 206 países estarán representados en los Juegos Olímpicos de París 2024, por lo que algunos equipos deberán compartir embarcaciones. La seguridad será garantizada por un operativo sin precedentes, con 45.000 agentes, 10.000 militares y vigilantes privados desplegados a lo largo del recorrido.

¿Lady Gaga y Céline Dion en el espectáculo?

Durante el desfile, los atletas pasarán por lugares emblemáticos como la catedral de Notre-Dame, el museo del Louvre y la Torre Eiffel. Se espera una docena de escenas con actuaciones musicales, acrobacias, luces y pirotecnia, así como homenajes a la cultura francesa. Aunque los detalles siguen siendo secretos, se rumorea que Lady Gaga y Céline Dion podrían protagonizar una de las actuaciones más destacadas. También se espera la participación de la artista franco-maliense Aya Nakamura, quien ha enfrentado críticas racistas y defenderá su música afropop en la ceremonia.

El pebetero y su encendido: el gran misterio

Uno de los mayores secretos es la ubicación del pebetero olímpico y quién será el encargado de encenderlo. En los Juegos Olímpicos de Tokio 2020, la tenista Naomi Osaka tuvo el honor de encender el pebetero, pero aún no se ha revelado quién será el portador de la antorcha en París 2024.

Horario y cobertura de la ceremonia

La ceremonia de inauguración de los Juegos Olímpicos de París 2024 comenzará hoy a las 19:30 horas. Podrás seguir el evento minuto a minuto en la página web de Antena 3 Deportes, que ofrecerá las últimas noticias y todos los detalles desde las orillas del Sena.

 

Puedes seguir toda la actualidad visitando Official Press o en nuestras redes sociales: Facebook, Twitter o Instagram y también puedes suscribirte a nuestro canal de WhatsApp.

Continuar leyendo